
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 3
Computing with Numbers

Python Programming, 2/e 2

Objectives
n  To understand the concept of data

types.
n  To be familiar with the basic numeric

data types in Python.
n  To understand the fundamental

principles of how numbers are
represented on a computer.

Python Programming, 2/e 3

Objectives (cont.)
n  To be able to use the Python math

library.
n  To understand the accumulator

program pattern.
n  To be able to read and write programs

that process numerical data.

Python Programming, 2/e 4

Numeric Data Types
n  The information that is stored and

manipulated bu computers programs is
referred to as data.

n  There are two different kinds of
numbers!
n  (5, 4, 3, 6) are whole numbers – they don’t

have a fractional part
n  (.25, .10, .05, .01) are decimal fractions

Python Programming, 2/e 5

Numeric Data Types
n  Inside the computer, whole numbers and

decimal fractions are represented quite
differently!

n  We say that decimal fractions and whole
numbers are two different data types.

n  The data type of an object determines
what values it can have and what
operations can be performed on it.

Python Programming, 2/e 6

Numeric Data Types
n  Whole numbers are represented using

the integer (int for short) data type.
n  These values can be positive or

negative whole numbers.

Python Programming, 2/e 7

Numeric Data Types
n  Numbers that can have fractional parts

are represented as floating point (or
float) values.

n  How can we tell which is which?
n  A numeric literal without a decimal point

produces an int value
n  A literal that has a decimal point is

represented by a float (even if the
fractional part is 0)

Python Programming, 2/e 8

Numeric Data Types
n  Python has a special function to tell us the

data type of any value.

>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
>>>

Python Programming, 2/e 9

Numeric Data Types
n  Why do we need two number types?

n  Values that represent counts can’t be fractional
(you can’t have 3 ½ quarters)

n  Most mathematical algorithms are very efficient
with integers

n  The float type stores only an approximation to the
real number being represented!

n  Since floats aren’t exact, use an int whenever
possible!

Python Programming, 2/e 10

Numeric Data Types
n  Operations on ints produce ints, operations

on floats produce floats (except for /).
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0

Python Programming, 2/e 11

Numeric Data Types
n  Integer division produces a whole

number.
n  That’s why 10//3 = 3!
n  Think of it as ‘gozinta’, where 10//3 =

3 since 3 gozinta (goes into) 10 3 times
(with a remainder of 1)

n  10%3 = 1 is the remainder of the
integer division of 10 by 3.

n  a = (a/b)(b) + (a%b)

Python Programming, 2/e 12

Using the Math Library
n  Besides (+, -, *, /, //, **, %, abs), we

have lots of other math functions
available in a math library.

n  A library is a module with some useful
definitions/functions.

Python Programming, 2/e 13

Using the Math Library
n  Let’s write a program to compute the

roots of a quadratic equation!

n  The only part of this we don’t know
how to do is find a square root… but
it’s in the math library!

2 4
2

b b acx
a

− ± −=

Python Programming, 2/e 14

Using the Math Library
n  To use a library, we need to make sure

this line is in our program:
import math

n  Importing a library makes whatever
functions are defined within it available
to the program.

Python Programming, 2/e 15

Using the Math Library
n  To access the sqrt library routine, we

need to access it as math.sqrt(x).
n  Using this dot notation tells Python to

use the sqrt function found in the math
library module.

n  To calculate the root, you can do
discRoot = math.sqrt(b*b – 4*a*c)

Python Programming, 2/e 16

Using the Math Library
quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
 print("This program finds the real solutions to a quadratic")
 print()

 a, b, c = eval(input("Please enter the coefficients (a, b, c): "))

 discRoot = math.sqrt(b * b - 4 * a * c)
 root1 = (-b + discRoot) / (2 * a)
 root2 = (-b - discRoot) / (2 * a)

 print()
 print("The solutions are:", root1, root2)

main()

Python Programming, 2/e 17

Using the Math Library
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 3, 4, -1

The solutions are: 0.215250437022 -1.54858377035

n  What do you suppose this means?
This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 3

Traceback (most recent call last):
 File "<pyshell#26>", line 1, in -toplevel-
 main()
 File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS 120\Textbook\code

\chapter3\quadratic.py", line 14, in main
 discRoot = math.sqrt(b * b - 4 * a * c)
ValueError: math domain error
>>>

Python Programming, 2/e 18

Math Library
n  If a = 1, b = 2, c = 3, then we are

trying to take the square root of a
negative number!

n  Using the sqrt function is more efficient
than using **. How could you use ** to
calculate a square root?

Python Programming, 2/e 19

Accumulating Results:
Factorial
n  Say you are waiting in a line with five

other people. How many ways are there
to arrange the six people?

n  720 -- 720 is the factorial of 6
(abbreviated 6!)

n  Factorial is defined as:
n! = n(n-1)(n-2)…(1)

n  So, 6! = 6*5*4*3*2*1 = 720

Python Programming, 2/e 20

Accumulating Results:
Factorial

n  How we could we write a program to do
this?

n  Input number to take factorial of, n
Compute factorial of n, fact
Output fact

Python Programming, 2/e 21

Accumulating Results:
Factorial

n  How did we calculate 6!?
n  6*5 = 30
n  Take that 30, and 30 * 4 = 120
n  Take that 120, and 120 * 3 = 360
n  Take that 360, and 360 * 2 = 720
n  Take that 720, and 720 * 1 = 720

Python Programming, 2/e 22

Accumulating Results:
Factorial
n  What’s really going on?
n  We’re doing repeated multiplications, and

we’re keeping track of the running product.
n  This algorithm is known as an accumulator,

because we’re building up or accumulating
the answer in a variable, known as the
accumulator variable.

Python Programming, 2/e 23

Accumulating Results:
Factorial

n  The general form of an accumulator
algorithm looks like this:

Initialize the accumulator variable
Loop until final result is reached

update the value of accumulator
variable

Python Programming, 2/e 24

Accumulating Results:
Factorial

n  It looks like we’ll need a loop!
fact = 1
for factor in [6, 5, 4, 3, 2, 1]:

fact = fact * factor
n  Let’s trace through it to verify that this

works!

Python Programming, 2/e 25

Accumulating Results:
Factorial
n  Why did we need to initialize fact to 1?

There are a couple reasons…
n  Each time through the loop, the previous

value of fact is used to calculate the next
value of fact. By doing the initialization,
you know fact will have a value the first
time through.

n  If you use fact without assigning it a value,
what does Python do?

Python Programming, 2/e 26

Accumulating Results:
Factorial
n  Since multiplication is associative and

commutative, we can rewrite our
program as:

fact = 1
for factor in [2, 3, 4, 5, 6]:

fact = fact * factor
n  Great! But what if we want to find the

factorial of some other number??

Python Programming, 2/e 27

Accumulating Results:
Factorial
n  What does range(n) return?

0, 1, 2, 3, …, n-1
n  range has another optional parameter!

range(start, n) returns
start, start + 1, …, n-1

n  But wait! There’s more!
range(start, n, step)
start, start+step, …, n-1

n  list(<sequence>) to make a list

Python Programming, 2/e 28

Accumulating Results:
Factorial

n  Let’s try some examples!
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5,10))
[5, 6, 7, 8, 9]
>>> list(range(5,10,2))
[5, 7, 9]

Python Programming, 2/e 29

Accumulating Results:
Factorial

n  Using this souped-up range statement,
we can do the range for our loop a
couple different ways.
n  We can count up from 2 to n:

range(2, n+1)
(Why did we have to use n+1?)

n  We can count down from n to 2:
range(n, 1, -1)

Python Programming, 2/e 30

Accumulating Results:
Factorial

n  Our completed factorial program:

factorial.py
Program to compute the factorial of a number
Illustrates for loop with an accumulator

def main():
 n = eval(input("Please enter a whole number: "))
 fact = 1
 for factor in range(n,1,-1):
 fact = fact * factor
 print("The factorial of", n, "is", fact)

main()

Python Programming, 2/e 31

The Limits of Int
n  What is 100!?
>>> main()
Please enter a whole number: 100
The factorial of 100 is

9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
6979208272237582511852109168640000000000000000000000
00

n  Wow! That’s a pretty big number!

Python Programming, 2/e 32

The Limits of Int
n  Newer versions of Python can handle it, but…
Python 1.5.2 (#0, Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)] on win32
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
 File "<pyshell#1>", line 1, in ?
 fact.main()
 File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main
 fact=fact*factor
OverflowError: integer multiplication

Python Programming, 2/e 33

The Limits of Int
n  What’s going on?

n  While there are an infinite number of
integers, there is a finite range of ints that
can be represented.

n  This range depends on the number of bits
a particular CPU uses to represent an
integer value. Typical PCs use 32 bits.

Python Programming, 2/e 34

The Limits of Int
n  Typical PCs use 32 bits
n  That means there are 232 possible

values, centered at 0.
n  This range then is –231 to 231-1. We

need to subtract one from the top end
to account for 0.

n  But our 100! is much larger than this.
How does it work?

Python Programming, 2/e 35

Handling Large Numbers
n  Does switching to float data types get

us around the limitations of ints?
n  If we initialize the accumulator to 1.0,

we get
>>> main()
Please enter a whole number: 15
The factorial of 15 is 1.307674368e+012

n  We no longer get an exact answer!

Python Programming, 2/e 36

Handling Large Numbers:
Long Int
n  Very large and very small numbers are

expressed in scientific or exponential
notation.

n  1.307674368e+012 means 1.307674368 *
1012

n  Here the decimal needs to be moved right 12
decimal places to get the original number, but
there are only 9 digits, so 3 digits of precision
have been lost.

Python Programming, 2/e 37

Handling Large Numbers
n  Floats are approximations
n  Floats allow us to represent a larger

range of values, but with lower
precision.

n  Python has a solution, expanding ints!
n  Python Ints are not a fixed size and

expand to handle whatever value it
holds.

Python Programming, 2/e 38

Handling Large Numbers
n  Newer versions of Python automatically

convert your ints to expanded form when
they grow so large as to overflow.

n  We get indefinitely large values (e.g. 100!) at
the cost of speed and memory

Python Programming, 2/e 39

Type Conversions
n  We know that combining an int with an

int produces an int, and combining a
float with a float produces a float.

n  What happens when you mix an int and
float in an expression?
x = 5.0 + 2

n  What do you think should happen?

Python Programming, 2/e 40

Type Conversions
n  For Python to evaluate this expression,

it must either convert 5.0 to 5 and do
an integer addition, or convert 2 to 2.0
and do a floating point addition.

n  Converting a float to an int will lose
information

n  Ints can be converted to floats by
adding “.0”

Python Programming, 2/e 41

Type Conversion
n  In mixed-typed expressions Python will

convert ints to floats.
n  Sometimes we want to control the type

conversion. This is called explicit typing.

Python Programming, 2/e 42

Type Conversions
>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)
4
>>> round(3)
3

